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Abstract. Corresponding to the definitions of positive definite
functions there are various approaches to defining negative definite
functions on hypergroups. These range from the obvious “pointwise”
definition to axiomatization via the Schoenberg duality. Researchers in
this area have used definitions best suited to their immediate purposes.
In this paper we present a comprehensive treatment of negative
definite functions on commutative hypergroups, leading to convolu-
tion semigroups of probability measures and their Lévy—-Khintchine
representation within the framework of commutative hypergroups on
subsets of Euclidean space.

Throughout this paper the analysis will be carried out on a commutative
hypergroup K for which our fundamental reference is [17]. In general, we
follow Jewett’s notation except that the point measure at xe K will be denoted
by &, and wg, mx will denote respectively Haar measure on K and its
associated Plancherel measure. For an overview of probability theory on
a hypergroup the reader is referred to [15]. Important to our treatment will be
the knowledge of the different spaces of positive definite functions which were
considered in" detail in [8], and which we introduce in Section -1. Negative
definite functions on K and K * are the subjects of Sections 2 and 3 respectively,
and in Sections 4 and 5 we present a range of examples to support the theory.

1. POSITIVE DEFINITENESS ON HYPERGROUPS AND THEIR DUALS

Since negative definite functions are in each framework defined in duality
to positive definite functions, we shall briefly report on the various concepts of
positive definiteness which in the case of commutative hypergroups have been
compared in [8]. :

* This article was prepared in part while the first-named author held an Alexander von
Humboldt fellowship at the University of Tiibingen.
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By analogy with the group case we introduce, for any hypergroup K,
positive definite functions as complex-valued functions f on K that are
measurable, locally bounded and satisfy

i i a;a; f(x;xx;) 2 0

whenever a,, a,, ..., a,€C and x, x,, ..., x, € K. Clearly, every semicharacter
of K is positive definite. It can be easily seen that positive definite functions on
K need be neither bounded nor continuous. On the other hand, continuity of
a positive definite function on K at e implies continuity everywhere. By P(K)
and P,(K) we denote the sets of continuous positive definite and bounded
continuous positive definite functions on K, respectively. In the sequel we shall
apply among other properties the fact that the set P,(K) is closed in the
topology of compact convergence, and that Bochner’s theorem holds in the
form of the equality (in fact, a homeomorphism)

P,(K) = MY (K")".

There are three other types of positive definiteness appearing in the
literature. Let S be a subspace of M®(K). A locally bounded measurable
function f on K is said to be S-positive definite if

[fd(usp) 20
K

for all ueS, and f is said to be S-strongly positive definite if
[fdp=0

K
whenever pueS with > 0. In addition we shall consider strongly positive
definite functions f on K in the sense that f= ¢ for some ce M’ (K").
We use the suggestive notation Pg(K), P§ (K) and Py (K) for the bounded

~ continuous elements in the three classes defined above.

Prominent choices of S are S, the space of finitely supported measures,
and §; = M,(K), the space of wy-absolutely continuous measures. Further
choices proposed in [13], [26] and [18] are

S,:= {#eM”(K): =gy, QECC(K)}a
Sy:={ueM?(K): u=ce,+gwy with ceC and geC,(K)},

and S,:= M®(K), respectively. The following results are straightforward once
Bochner’s theorem is known.

1.1. THEOREM. For i =0, 1, 2, 3,4 the sets Pg (K) coincide.
1.2. THEOREM. For i=0,1, 2, 3, 4,

PB(K) = Psi(K) = SS)(K)
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Next we shall introduce positive definiteness for functions on the dual
space K" of a commutative hypergroup K.

For any subspace T of M®(K") containing ¢, (where 1 is the unit
character) a locally bounded measurable function f on K is called T-strongly
positive definite if for every pe T with (>0 we have

[ fdp =0,
KA

and fis called strongly positive definite if there exists a measure ue M?% (K) such
that /i = f. The collections of bounded continuous T-strongly positive definite
and strongly positive definite functions on K* will be abbreviated by PP (K*)
and P;(K"), respectively. Again we present the prominent choices Tj, of finitely
supported measures on K*, T;:= M*(K") and

T,:={ueM"(K"): p=ce,+gny with ceC, geC,(K")}.

The latter two classes have been introduced in [18] and [27], respectively.
Concerning the relationship between these classes of positive definite
functions on K" we quote the following results.
1.3. THEOREM. Pyz(K")c P (K*) < P (K"), where equality holds if
supp (zg) = K".
1.4. THEOREM. If K is strong we have
PP (K*) = Pr,(K"),

and in the case where K is compact, equality holds if and only if K is Pontryagin.

2. NEGATIVE DEFINITE FUNCTIONS ON HYPERGROUPS

2.1. DeFINITION. A complex-valued function f on K will be called negative
definite if it is measurable, locally bounded and satisfies f(e¢) = 0, f~ =, and

Z Z a;a; f (x;xx;) < 0
i=1 j=1

for every ne N, every choice of a,, a,, ..., a,eC satisfying Z:=1 a; =0, and
every choice of x,, x5, ..., x,€K.

Negative definite functions need be neither bounded nor continuous. The
set of negative definite functions on K will be denoted by N (K). Clearly, each
constant function cle N(K) for all ¢ > 0.

It is quite standard to show that a locally bounded measurable function
f is negative definite if and only if

Y a; a_j(f(xi)'f'f(—xj)—f(x,-*xf)) =0

1j=1

2.1.1)

n n

I
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for all choices of neN, as, dy, ..., 4, €C, and x,, x,, ..., x,€K; see for
example [6], Chapter 4, Proposition 1.9.
For the following two results we do not assume K to be commutative.

2.2, ProrosiTION. Let fe N(K). For all x, yeK

@ f(x*x")eR

(b) f(x*x7)+f(y*y7) < 2Re(f (x™ +y)).

© fx*x7)+f(e) < flx)+f(x7)

(d) flx=*x~ )20 if and only sze(f)

() 1f )+ ()= exy )2 < (f (%) +f(x)-f xx N (f D+ ()

—f(y=*y7))

) f—f(e)eN(K).

(g) If Re(f) is bounded below, then Re (f) = f(e) = 0

(h) If Re(f) =0, then |f (cx y)|Y2 < |f V2 +1f (D2

If ye P(K), then g(e)—ge N (K).

Proof. The proofs of (a)}{(d), (f) and the last statement can be shown
directly. To prove (e) take x, = x and x, = y in (2.1.1), which implies that the
matrix

(f(x)+f—(_x_)—f(x*x‘) f(x)ﬂT_y)—f(x*y))
SO+ @O=f#x7) L)+ D)~ ()

is positive definite, and hence has nonnegative determinant as required. For (g)
we first note that [20], Proposition 1.3, gives the result when Re (f) > 0 is
assumed. In general, if we only know that Re(f) > ¢, then f—c satisfies
Re(f—c) = 0. We also observe that f—c = f—f (e)+f (e)—ce N (K) using (f),
and applying the first part we see that Re(f)—c = Re(f—c) = f(e)—c, and
again Re (f) = f (e). For (h) see [20], Proposition 1.4. Finally, we just appeal to
Definition 2.1 to complete the proof of the theorem. m

7 It is of independent interest that the continuity of negative definite
functions is determined by their continuity at e. This can be proved using
Proposition 2.2 (e); see [9], Theorem 1.10.

2.3. THEOREM. A negative definite function f that is continuous at e is
continuous everywhere.

It is convenient to note that (M. (K),”) is an Abelian semigroup with
neutral element ¢, and involution ~ in which K can be naturally embedded via
the mapping x — ¢,. Then each continuous negative definite function f has
a natural extension to a negative definite function F on M!(K) given by
F(u): jK fdu for all pe M2 (K). Using this technique many results on negative
definite functions on semigroups can be transferred to hypergroups. For
example, it can easily be shown that for every bounded continuous negative
definite function f there exists ceR such that c—f is positive definite. For
details of the method see [9].
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2.4. DeFINITION. Let S be a subspace of M?(K). A locally bounded
measurable function f is called S-weakly negative definite if f(e) =0, f~ =1,
and { fdv <O for all veS§ with ¥ >0 and v(1) = 0.

We denote by N§ (K) the space of continuous S-weakly negative definite
functions on K.

2.5. DeFINITION. Let S be a subspace of M?(K). A locally bounded
measurable function f is called S-weakly' negative definite if f (e} =20, f~ =/,
and f fd(v+v7) <0 for all veS with ¥(1)=0.

We denate by N§*? (K) the space of continuous S-weakly’ negative definite
functions on K. Note that N§*’(K) = N (K)nC (K), where S, is the subspace of
MP(K) consisting of all finitely supported measures.

2.6. DEFINITION. Let § be a subspace of M?(K). A locally bounded
measurable function f is called S-negative definite if f(e) = 0 and exp(—tf)
€ Py(K) for all +-> 0, and f is called S-strongly negative definite if f(e) > 0 and
exp(—tf)e P (K) for all ¢t > 0.

We denote by Ng(K) (respectively, N§(K)) the space of continuous
S- (respectively, S-strongly) negative definite functions on K. Clearly, if S = §
then

N (K) = N§'(K), N§(K) = N (K),
Ng(K)= Ng(K) and N (K) < N§ (K).
It is also easy to see that
N§(K)c Ng(K) and N§(K) < N§(K).

Note that for both S-negative definite and S-strongly negative definite
functions f it is part of the definition that exp(—tf) be bounded, which is
equivalent to Re(f) being bounded below.

2.7. LemMA. If S+ C (K)wg = S, then N§(K) = N{(K) and N§"(K)
c N¢(K).

Proof. We deal only with the first of the two inclusions as theﬁﬁroof of the
second is similar. Choose (ky) in C; +(K), a bounded approximate unit for I* (K)
w1th kV > 0. Then for veS satisfying ¥(1) =0 and ¥ > 0 it is the case that

((;) xk,)wgeS (by assumption) with ¥, (1) =0 and ¥, > 0. Hence for
f eNg’ (K)

{fdv =1lim { fdv, <0,
K V k

so that feN{(K). ®

Lasser’s pointwise definition of negative definiteness (see [19] and [20]) is
just S,-weak negative definiteness together with continuity. Other choices of

11 — PAMS 16.1
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S treated in the literature correspond to those given for positive definiteness in
Section 1. :

S-negative definiteness and S-strong negative definiteness have been
introduced via an axiomatization of the Schoenberg duality. A particularly
interesting choice in the latter case is when exp (—tf) € Pz(K) (cf. [7], Definition
2.1). We denote by N¥(K) the corresponding space of continuous negative
definite functions.

We have the following general properties of negative definite functions.

2.8. ProposITION. (a) For feN§(K),
Re(f)=f(e) = 0.
(b) If £, ge N (K) (respectively, N (K), N§ (K)), ¢ >0, then
f of. f+¢, Re(f)e N§(K) (respectively, N§"(K), N§ (K)).
(¢) If feN§(K) (respectively, N§(K), N§ (K)), then
f—f(e)eN§"(K) (respectively, N§(K), N§ (K)).
(d) If fe P9 (K) (respectively, Pg(K)), then
f(e)—f e N§(K) (respectively, N§" (K)).

) If(f,) in N (K) (respectively, N$*"(K), N§ (K)) converges uniformly on
compact subsets of K to f, then

feNE(K) (respectively, N§"(K), N (K)).
Proof. (a) Fix xe K and consider u := 2s,—¢&,—&,- €S,. We have for all

yeK" L
' Al)=2—xx)—x(x) =0 and A(1)=0.

Thus ' {, fdu <0, and since f~ =, we have
2f () < f(¥)+f (x7) = 2Re(f (x)).

The proofs of (b}{e) are straightforward. =

2.9. PrOPOSITION. Let f e N§V(K) and 1 > 0. Then R, := (A+f) "' e P5(K).

Proof. The function R, is continuous and, by Proposition 2.8 (a),
bounded. In view of Theorem 1.2 we need only show that R, € P§) (K). Consider
p:=gwgeS,(geC,(K)) with g > 0. Using (u”)" = ()~ = /i and the unique-
ness of the Fourier transform we have p = y”, and hence g = ¢g~. Note that
since f and R, satisfy f=f"and R, = R respectively, all the integrals
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that appear in the remaining part of this proof are real-valued. Also in view of
Proposition 2.8 (c) we can assume that f(e) =
Suppose that |, R;du <0. Now R, ueS, and

h=@wﬂ=(ﬁ%)£cqu

Since by our assumption k(1) < 0, there exists y,e K" such that the real-
-valued function h takes its minimum on K”* at yx,. Define veS; by
vi=h(xo)é.—Xo Ry 1t Then v satisfies 7(1) =0, v =", and for all yeK"

§0) = hto)— [ To Radit = h(x)— | [ 7R, dule, * &55) (dn)

Kr K

= h(xo)— § hd(eg*e,) < 0.
K»

Therefore, as fe N§ (K) with f(e) =0,
0< [fdv=—{fxoRydp
K K

and
lII(Radu=rlh(l) ih(xo)—flxoR dy > I(Hf)Rlxodu fixo) =

contradicting our assumption, and thus the proposition is proved. =

2.10. TueoreM. N§? (K) = N§ (K).

Proof. Let fe N{(K). By Proposition 2.9, R, := (1+f)"'ePy(K) for
each 1> 0. Write

fii=Af A+t =227 =@A+N7H.
Now -
exp (—1f;) = exp(—tA)exp(tA*R))
: = exp(—tA) (1 +tA* R, +£(tA?)? R3+ ...)e P5(K).

Since lim, f, = f on K, we have lim, exp (—tf,) = exp(—tf) for all £ > 0. Now
exp(—tf)e C,(K), and hence exp (—tf)e P5(K) for all t > 0. Appealing to [&],

Theorems 1.7 and 1.17, there exist u, € M% (K *) with fi, = exp (—tf), which just
says that fe N (K). ®

2.11. THEOREM. We have
N§ (K) = N§(K) = Ns,(K) = N§(K) = N (K) = N§&(K) = N§& (K)

for all i,je{0,1,2,3,4} and k,1€{l,2,3,4}. Furthermore, there exist
hypergroups for which the second inclusion is proper.
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Proof. The equalities N§(K) = N§)(K) = N§,(K) for i,je{0, 1, 2, 3, 4}
follow immediately from [8], Theorem 1.17, which is just the corresponding
statement for the underlying spaces of positive definite functions. Now the
obvious inclusions between the test spaces give

N§)(K) = NS (K) = N&(K),  N§H(K) < N (K) = NE; (K)
and
N§)(K) = N§(K).
Appealing to Lemma 2.7 we infer from S, * C,(K)wg < §, and S, * C,(K) wg
c §, that
N§(K) = N§)(K)  and  N§Y(K) = N (K).
Putting these inclusions together gives
N§? (K) = N§P(K) = N§) (K) = N§ (K) = N§)(K).

A similar argument gives the analogous statement for S-weakly’ negative
definite functions.
We now show that

NP (K) = N§)(K).

First consider f € N§ (K) so that for each t > 0 there exists v,e M% (K*) such
that v, = exp(—1tf). An immediate consequence is that f~ = f. Moreover, for
ueS, with >0 and (1) =0,

[fdu={ llmt'l[l exp(—tf)]du = hmt lj [1—exp(—t)]du

K

K 0

= —limt~ 1jv dy = —limt~ lj',udv, <0,

t—0 t—0

~ which gives feN§(K).

To complete the equalities between N§ (K) and the spaces of §,-weakly
definite functions for ke {1, 2, 3, 4} just use Theorem 2.10.

We next show that N‘“’)(K) = N$(K) which will give equality of the
spaces of S-weakly’ negative definite functlons Indeed, let fe N{*"(K) and
choose pe M®(K) with 4(1) = 0. Now there exists (u,) in S, with lim, u, = 4,
and replacing p, by u,—f,(1)e, if necessary, we can further assume that
f,(1) =0 for all a. By the choice of f we have

Jfd(usp”) =lim [ fd(u,*pz) <0
K ¢ K

so that fe N{’(K).
Finally, we observe that by Proposition 2.8 (a), Re(f) = f(e) = 0 for all
feN{(K). It is known (see [28], Remark 4.8) that for every polynomial
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hypergroup (Z ., *) there exists f e N§""(Z ) for which f (n) <O for all ne N
(in fact, f(n) = —P,(x) is such a function). This shows that N§”(K) could
be a proper subset of N{*)(K), and this completes the proof of the
theorem. =

2.12. Remark. In view of the preceding result it is not possible in general
to prove that

Z c;c; exp(—tf(x #x7)) = Y ciciexp(—tf)(x;*x;)

hi=1 . ) Lj=1
(cf. [28], Remark 2.6 (c)) which would give N (K) = N{?(K), and hence
equality of all the spaces in Theorem 2.11.

} 3. NEGATIVE DEFINITE FUNCTIONS
ON THE DUAL SPACE OF A COMMUTATIVE HYPERGROUP

Negative definiteness has an analogous interpretation for the dual K*
when K is commutative.

3.1. DEFINITION. Let T be any subspace of M”(K") containing e, .
A locally bounded measurable function f on K" is called T-weakly negative
definiteif f(1) =2 0,f~ =fand fKAfdv < Oforallve T with v = 0 and v (e) =

We denote by N (K *) the space of continuous T-weakly negative definite
functions on K. It should be noted that membership of f in N (K") (see
below) is only affected by the behaviour of f on supp (7).

3.2. DeFINITION. Let T be any subspace of M®(K") containing ¢,.
A locally bounded measurable function f on K* is called T-strongly negative
definite if f(1) > 0 and exp(—tf)eP$ (K") for all ¢t > 0.

We denote by N (K*) the space of continuous T-strongly negative
definite functions on K*. Note that 1e N¥ (K") for any such subspace T.
Also N§ (K ") denotes the corresponding strong space with P (K *) replaced
by Pz(K"). T-strongly negative definite functions have been studied for the
various choices of T = M?(K") appearing in Section 1.

3.3. PrROPOSITION. We have
NP (K") = NP, (K") = N, (K*),
N (K") = N¥(K") and NP(K")< NP(K*).

Proof. The first line of inclusions follows from [8], Proposition 2.4. The
inclusion N%)(K") = N%)(K*) follows from the inclusion T, < T;. To prove
that NP (K*) = N¥( K ) consider ve T with ¥> 0 and v(e)=0, and let
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feNP(K"). Then

[ fdv= [ limt™(1—exp(—tf))dv

Kat—0

=lim¢™! | (1—exp(—tf))dv = —limt™ ' | exp(—tf)dv <0,
K» 0 ga

=0
the last equality and the inequality using ¥(e) = 0 and exp(—tf)e PP (K"),
respectively. m
3.4. PROPOSITION. (a) For fe Ny (K*) and yesupp(my),

Re(f() =f (@) =0.
(®) If f, ge NQ(K*) (respectively, N¢’(K*")), and ¢ > 0, then

f. of, f+g, Re(f)e NP (K*) (respectively, N (K*)).
(©) If feN(K*) (respectively, N$(K*)), then
f— f()eNP(K") (respectively, N§(K*)).
() If fe PP (K") (respectively, Py(K")), then
SO —feNPI(K") (respectively, NS (K*)).

@ If () in NP(K") (respectively, N (K")) converges uniformly on
compact subsets of K" to f, then

feNY(K*) (respectively, N¢'(K*)).
Proof. The proof of (a) is given in [27], Lemma 3.5. The other parts are

straightforward. =

3.5. Remark. Proposition 3.4 (a) should be compared with the following
result: For feN% (K") and for all yeK*, Re(f(y))=/(1)> 0. Indeed,
exp(—tf)e P§, (K") so that

exp(—tRe(f () < lexp(—1f)], < exp(—f (1) for all yeK*, ¢ >0,

and the desired inequality follows. Note that N{. (K*) is the smaller space,
giving a stronger result, in which case it is probably true that the behaviour of
f off supp(ng)u{l} is already determined.

3.6. PrOPOSITION. Let feNY)(K*) and A>0. Then R, :=(A+f)"! is
continuous and bounded on supp(nyg)U{l}, and every continuation of R, to
a bounded continuous function on K" belongs to P (K*).

The proof of Proposition 3.6 can be found in [27], Lemma 3.6.
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3.7. Remark. As in Proposition 3.6, for fe N{ (K*) and 4 > 0 we have
(A+f)"'e PP (K"). The proof which is somewhat more direct goes as follows.
Let ve M*(K*) and assume f (1) > 0. Then, using Remark 3.5, we obtain

§f flevatdpl < § [ e¥Mardpyl =f1)"*p|(K") < .

K» R4 K~ R+
Applying Fubini’s theorem gives for v > 0
(fav= [ [eYdtdv= [ [eYavdt>0
KA

K* R. R+ K-

as e e PP (K*), so that f -l P{ (K*). Now consider arbitrary fe N9 (K*)
and A > 0. By Proposition 3.4 (b) we have A+feN§ (K*), and using the
argument above we obtain (A+f)"!'eP§ (K").

A key result in the theory of negative definite functions is the Schoenberg
correspondence which was given in [27], Theorem 3.7.

3.8. THEOREM. (a) To each continuous convolution semigroup (u);», on
K there corresponds a uniquely determined function feN$(K") with
i, = exp(~tf) for all t > 0.

(b) To each feN¥)(K") there corresponds a uniquely determined con-
tinuous convolution semigroup (u.).»0 on K satisfying

.at |supp(nx) = exp(—lf) Isupp(nx) and ﬂt (1) < CXP(—UF(I)) for d” > O

We can use Theorem 3.8 to refine Proposition 3.3. The latter result shows
that of the five spaces of negative definite functions in common use N§ (K *) is
the smallest, and N%*)(K ") the largest. However, these two spaces, and hence
all five, agree when restricted to supp (m).

3.9. ProPOSITION. We have
N(BS) (K A) ISupp(ﬂ!K) = N(TS)1 (K A) Isupp(ﬂ-’x)
= N(Is')z (K A) |supp(nx) = N(I"‘;) (K A) lsupp(nx) = N(Tu;) (K " )lsupp(ﬂ:x)'

Proof. In view of the inclusions in Proposition 3.3 it suffices to prove
that

N(T“;) (K A) lsupp(ﬂx) < Ng) (K A) |supp(1zK)'

Let feN®)(K"). By Theorem 3.8 (b) there exists a unique convolution
semigroup (i,);>o with

.dt ISupp(ﬂ:K) = &Xp (_ tf ) ISUDD(HK)'

Now use Theorem 3.8 (a) to deduce the existence of a uniquely determined
function ge N§(K*) with fi, = exp(—1tg) so that

exp (_ lf) Isupp(ﬂ:x) = ¢Xp ( - tg) Isupp(nx)-
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Since the function exp is one-to-one, we have

f Isupp(rrx) =4 |supp(1tx) € N(E) (K A) ISupp(ﬂK):

which just proves that N9 (K")lsuppix) © N5 (K} |suppnx) @S T€quired. m

4. APPLICATION: POSITIVE AND NEGATIVE DEFINITENESS
WITH RESPECT TO A SUBSET OF THE DUAL SPACE

-In the application of negative definite functions to continuous convolution
semigroups and their associated additive (Lévy) processes further restricted
versions of the original definitions occur (see [5]); we sketch one of these.

We are remaining within the framework of a commutative hypergroup
K with sets K* and K" of continuous semicharacters and characters,
respectively. Let L denote a nonempty subset of K*.

-4.1. DErFINITION. A continuous function fon K is said to be positive definite
with respect to L if for all pe M,(K) with fi(y) = 0 whenever yeL we have

[fdu =0,

K

and f'is said to be negative definite with respect to L provided f(e) =0,f~ =f
and for all pe M (K) with u(K) =0 and fi(y) >0 whenever yeL we have

[fdu<0.
K

The classes of functions on K that are positive or negative definite with
respect to L will be denoted by

P9K,L):=Pyx((K,L) and N™(K,L):=N{x (K, L),
respectively. For the special choice L:= K* we obtain
. PY9K,K*¥) <« P(K)nC(K) and P9 (K, K*¥) = N(K)nC(K).
As for the reverse inclusions only partial results are available (see [26] and
[28]).

4.2. Polynomial hypergroups in one variable. This class of discrete hyper-
groups together with its most known subclasses appears for example in [16].

For real-valued functions f on a polynomial hypergroup (Z, , x(Q,)) the
notions of positive and negative definiteness with respect to L:= K*¥ ~ R
coincides with the unrestricted ones. Moreover, defining

T;(Q):=f(n) for all neZ,

we see that
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(a) feP®(Z,, R)if and only if T} is a positive linear functional on R [x] if
and only if there exists a (not necessarily unique) measure ue M , (R) satisfying

f(n)= IQ (x)u(dx) for all neZ,.

(b) f with f(0) =0 belongs to N™(Z,, R) if and only if T, is a linear

functional on R[x] satisfying
T,(0) <0

for all QeR[x] with Q(1) =0 and Q(x) = 0 whenever xeR.

In the éi)ecial case where L:=K" ~Dg:=[—1,1] and f(0) =0 the
following conditions are equivalent:

(l) fEN(W)(Z+s [_17 1])

(ii) T,(Q) <0 for all QeR[x] with Q(1)=0 and Q(x) >0 whenever

xe[—1, 1].
1-0,
n—>T(1 Id) =f(n)

(iii) The mapping
from Z, into R gives rise to a linear function T on R[x] satisfying T(Q) <0
for all QeR[x] with Q>0 on [—1, 1].
(iv) There exists ue M, ([—1, 1]) such that for all neZ
1-0,(x)
J o~

[—1.1[ 1-

S = 1 (dx).

In fact, the equivalence (i)<>(iii)) remains true for L:= K" ~ D (not
necessarily coinciding with [—1, 1]) and real-valued functions f on Z,
satisfying f (0) > 0. Under these assumptions it is shown in [28] that (i) implies

(v) feN(Z,) and f(n) 2/ (0)=0.

For the converse implication (v) = (i) additional assumptions are needed,
for example:

(A1) Dgo[-1,1]
and

(A2) For every neZ, there exist y,; =0 with keZ _, k < n, such that

X" = Z yn,ka'
k=0

Examples of polynomial hypergroups (Z ., = (Q,)) satisfying (A1) and (A2)
are the ultraspherical hypergroups (of the form (Z , , *(Q¥#)) witha = f > —3),
the generalized Chebyshev (polynomial) hypergroups (Z , , * (Q%*)) with a—1
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> f > —3%, and the Cartier hypergroups (Z ., *(Q%) with ae N, a > 2. On the
other hand, the implication (v) = (i) for general Jacobi polynomial hypergroups
(Z ., +(Qy"), where o« > B, remains an open problem.

5. APPLICATION: REPRESENTATIONS OF NEGATIVE DEFINITE FUNCTIONS

At first we note that bounded (continuous) negative definite functions on
hypergroups are of little interest in Lévy—Khintchine type representation
theory. In fact, any function feN (K)nC,(K) is of the form

f)=f@+ | (1—xx)n(dx)

for all xe K, where e M% (K*) (see [28]). In particular, such representations
are readily available once the underlying hypergroup is compact.

On the other hand, establishing Lévy-Khintchine representations for
unbounded negative definite functions on hypergroups K and their dual spaces
K* in the sense of the various definitions given in Sections 1 and 2 remains an
involved matter unless at least one-sided boundedness conditions are satisfied.

In the subsequent listing of examples we shall emphasize the relationship
of the definitions of negative definiteness treated in the literature to the
hierarchy of classes discussed in the previous sections.

5.1. One-dimensional hypergroups.

5.1.1. Jacobi polynomial hypergroups of the form (Z,,*(Qpf)) with
a>pf>—1and (B > —3 or a+f > 0). These hypergroups are hermitian and
Pontryagin with Z% ~ Dg=[—1, 1]. There are several sources where the
following representation occurs ([10], [14], [20], [9]).

Any feN(Z,) satisfying f(0) > 0 admits a representation

f)=fO)+qm+ | (1-0i)dy for all neZ,,
[-1,11

wheré g is a nonnegative quadratic form on Z_ given by

nn+o+pf+1)

() =a a+B+2

for all neZ, and some a >0, and yeM, ([—1, 1]).

5.1.2. Sturm-Liouville hypergroups ([0, 7/2], = (A)) of compact type. We
consider the dual space [0, n/2]" of [0, x/2] which can be identified with the
set {¢,: neZ,} of normed eigenfunctions ¢, associated with the countably
many simple eigenvalues 4, < 0 of the Sturm-Liouville operator L, defining
the given hypergroup. In [1] it is shown that a real-valued function f on the
dual Z, ~{¢,:neZ,} of [0, n/2] belongs to the class N¥)(Z,) (with
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Ty := M, (Z ,)) if and only if there exist a constant a > 0 and ne M, (J0, =/2])
satisfying

[ d—¢)dn< oo

10,n/2]

such that

f@=fO+ai,+ [ (1—¢)dy for all neZ,.
10,%/2]

We note that the characters ¢, of [0, /2] are related to the Jacobi
polynomials 0%f, neZ,, via the equality
Dannratp+ny(X) = 05# (cos 2x)

valid for all xe[0, n/2]. Consequently, in this case ([0, m/2], *(A)) is isomor-
phic to the dual Jacobi polynomial hypergroup ([—1, 1], *(Q%%)).

5.1.3. Sturm—Liouville hypergroitps of noncompact type. Let (R, , *(A)) be
a Sturm-Liouville hypergroup of noncompact type with dual space

R} =R, vi[0, o] ~ {¢,: 1eR, Vi[O, ]},

where ¢ denotes the index of the Sturm-Liouville operator L, defining the
underlying hypergroup, and ¢, is the eigenfunction associated with the
eigenvalue A2+ 0% By [23] every ¢, can be expanded on R, as

¢, = kZ (— l)k b, (/12 +Q2)k,
20

where the functions b, are determined by
by:=1, Lybi1= —b,

d
| bk+1(0)=abk+1(x)|x=0=0 (k> 0).
In particular, b, is given by
bl (x) = _;1;¢s|s=0, Where Si= AZ+QZ a.l'ld l)bs = ¢i.

The following representations have been given in [3] and [11], [12],
respectively. For every feNg, (R,) there exist a constant a>0 and
neM ., (R3\{ig}) such that 5|g, is bounded and

| (+e)n@h) < w
10,0l
satisfying
f=fO+ab,+ | (1—d)n(dd).

R {\{ig}
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On the other hand, given a function /'€ N§' (R}) there exist a constant a > 0
and ne M, (R, \{0}) satisfying

2

f 1_'_x211(alx)< 0
such that
fAH=FO)+a(2+e)+ | (1—¢,(x)n(dx) for all ieR?.
R \{O}

. While the first cited representation can be also obtained from a general
result in [9], the second one remains still subject to ad hoc methods.

5.2. Higher dimensional hypergroups.

5.2.1. The disc polynomial hypergroups (Z%, »(Q%,)) with o > 0). These
are (non-hermitian) Pontryagin hypergroups with dual hypergroup (Z%)"
identified with the unit disc D. In [22] and [2] we find the following
representation, which for functions with lower bounded real part can also be
obtained from [9].

A complex-valued function ¥ on Z3 belongs to the class N%(Z%) if and
only if there exist a, b, ¢, deR, a, b, d >0, and ne M, (D\{(1, 0)}) satisfying

| (—xn(de )< oo

D\((1,0%}
such that
2
Y (m, n) = d+a(m—-n)2—ic(m—n)+b(m+n+ﬂ)
a+1
+ | (1=Qna(x, y)+iym—n)n(d(x, y))
PA((1,0))

whenever (m, n)e Z3.

5.2.2. Product hypergroups. We consider the product hypergroups
(R x R, *), where the first factor denotes the Euclidean group, and the second
one the Bessel-Kingman hypergroup with parameter o := (d—1)/2 for d > 1.
This hypergroup is again Pontryagin. In fact, its dual (R? x R_)" can be written
in the form ' ‘

I':=R*xR)V{(A, peR* xiR,: p<i|il}

which in turn is identifiable with R‘x R, under the homeomorphism
B: T - R*xR, given by

B(, u):= (4, 141>+ 4?)
for all (4, u)erI". Inspired by [25] we find the following representation in [4].
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A complex-valued function f on I" belongs to N§ (K*) with K := R?x R,
if and only if there exist b, b,,...,b;eR, b >0, a quadratic form g on
I’ defined by

d
qA, wi= Y apiii+cy® for all (A, perl,

Jjk=1
where 4:=(4,, 4,, ..., 4) € R, (ay) is a positive semidefinite matrix in M (d, R),
c>=0, and neM (K\{ 0, 0)}) satisfying

b1 +72

—————n(d(x, 1)) < o0
K\((O,O))1+”x” +r? ( )

such that
fO. 0 =b+1 Y, byd+q(d, 1
+ f (l—qb,l,,,(x,r)+—sz>z>n(d(x, )

K\{(0,0)) L+ {x||*+r

whenever (4, yyeI'. The characters ¢, , of K appearing in the integral term
have a product form and can be written as

Grp(x, 1) =X, 0 (F/IA12+4?)  for all (x,r)eR*xR,,

where ji,- 1y» denotes the modified Bessel function of the first kind and of order
(d—1)/2.

5.2.3. Mixed Jacobi hypergroups. Finally, we consider the mixed Jacobi
hypergroups (R, x[—m=, n], *), where the convolution % is introduced as
follows. For « >0, AeZ, and ueC let ¢™» denote the Jacobi function
associated with parameters o, 4 and u. The functions ¢, defined by

% (v, 0):= e (cosh y)* ¢P (y)  for all (y, O)eR, x[—m, n]
satisfy the product formula

TS &% (8, 7) = 6L (v, 0) 5 (2, 1),

where T %), is the generalized translation operator given explicitly in [24]. Now
the convolution of two Dirac measures on K := R, x[—mn, m] is given by

By, * &,y (f) 1= Thy £ (¢, 7)

whenever (y, 0), (¢,7)eK and feC.(K); it can be extended to all
bounded measures on K. The hypergroup (K, *) has an involution
(y,0) - (y, 0" :=(y, —0), and hence

(y: 0) = (t, T)_©y =t and COS(0+1)= 1. '
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It follows that (K, #) is not hermitian. Much of the harmonic analysis on K can
be developed from the more general discussion in [21]. In particular,

K" :={(4, WeZxC: %], <1}
= {(4, WeZxC: [Im(o) < a+1}

U{(A, WeZxC: p=iv,vz —(a+1), A= +(a+2m+1+n), neN}

=:.,F,'
Mo-feover,
wK=Au2.R+®G.
with
A,(y):=2**"D(sinh y)***'*coshy for all yeR,,
a(df):= —d0
and
ng(d(A, p) = on )zlc 1 (A W72 1zxk, (4, p) AdA)dp
(2 )2C 2(A, W54, p) A(dA)dy,
where
2L P Mo+ 1
Cy (s )i LT+l
I(@+A+1+ip)2) I'((c—A+1+ip)/2)
Cy(A, 1) :=Res,, =, [C1 (4, o) Cy (A, —pio)] ™1,
A:=El,
and

= J{(A, WeZxC: p=iv,v>0,1i= +(a+2m+1+n)}.

meN

Obviously, the unit character 1 of K corresponds to the element (0, i(x+ 1)) of
I, and

(Z xR, )uD = supp (m).
The necessary Fourier analysis is carried out on the subset supp(mg)u{l}
of K*. From [21] we know that any f eNP(K*) is of the form

fA, p)=a+ibA+di*>+ (A2 4+ 2 +(@+1)?)

2(x+1)
+ | (1—-¢%.(y, 0)+idbu(y, O)n(d(y,0))

K\{(0,0)}
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for all (4, pyesupp (ng)uf{l}, where a, b, ¢, deR, a, b, d 2 0, u is a function in
the class

D (K):

={feC®(Rx(]—=,0[u]0, x[)): y—f(y, 0)is even with compact support,
0 —f(y, 0) is 2n-periodic}

such that 0<u<1 and u=1 on a neighbourhood of (0,0), and

ne M, (K\{(0, 0)}). with
t 2, 02
ye+0
—————n{d(y, 0)) < .
xo.on 1 +y>+0 ( )

It is clear that the above representations yield canonical decompositions of
continuous convolution semigroups on K once the Schoenberg correspondence
in terms of negative definite functions on K” has been established. Theorem 3.8
provides the required information for the class N§ (K*).
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